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LETTER TO THE EDITOR 

A characteristic of the Lyapunov spectrum for the multichannel 
Anderson localisation in the thermodynamical limit 

D Hansel and  J F Luciani 
Centre de Physique Thtorique, Ecole Polytechnique, 91 128 Palaiseau Cedex, France 

Received 28 May 1987 

Abstract. The distribution of Lyapunov exponents of the N-channel Anderson problem 
is investigated. The Kolmogorov entropy and the maximum Lyapunov exponent are 
calculated in the thermodynamical limit at weak disorder. The ratio I of these two 
quantities, which characterises the convexity of the distribution, is shown to depend on 
the disorder, the energy and the energy spectrum of the noiseless system. Moreover, I is 
found to be in general greater than two, in agreement with the convex spectrum obtained 
previously by some authors through numerical experiments. It is also shown that, in 
contrast to the one-dimensional case, the ‘generalised Lyapunov exponent’ of order two 
and the largest Lyapunov exponent are equal in the limit N -+ W. 

Most of the analytical results concerning localisation theory have been obtained for 
one-dimensional systems [l]. In this case, the system is characterised by only two 
Lyapunov exponents, which are equal and  of opposite sign. Due to the existence of 
a single positive Lyapunov exponent, localisation in one dimension occurs for arbitrary 
disorder. 

In two or three dimensions, where an  entire spectrum of Lyapunov exponents 
exists, most reported work consists of numerical simulations. Among the questions of 
interest, the existence of a localisation transition has been thoroughly studied leading 
to the belief that states are always localised in two dimensions while in three dimensions 
a transition occurs [2,3,4].  Another problem of great interest concerns the thermo- 
dynamical limit of disordered strips or bars when their transversal sizes go to infinity. 
More precisely Newman [5] motivated by a work of Ruelle [6] has proposed that such 
systems should exhibit a limiting density of Lyapunov exponents. He suggested that 
this limiting density may be in some sense universal and he explicitly derived this 
distribution in some particular cases, exhibiting the triangular law that is a regular 
distribution of Lyapunov exponents. Universal properties have been also considered 
by Imry [7] as a support for using random matrix theory in order to explain universal 
fluctuations of conductance [8]. On the other hand, numerical simulations have been 
performed by Pichard and  Andrt  [9] and by Livi et al [lo]. Both of them obtain in 
the thermodynamical limit a regular distribution of Lyapunov exponents. However, 
their results show some deviation from the triangular law especially for the largest 
exponents. Moreover, in the case of bars they have noted a change in the concavity 
of the distribution at about the level of disorder corresponding to the localisation 
transition in three dimensions. It is interesting to note that according to their works 
such a change of concavity also occurs for strips. 
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With the exception of results obtained on the transport properties of samples by 
means of field theoretical methods, few analytical results have been otherR ise obtained 
for two-dimensional systems and even for quasi-one-dimensional systems. In a recent 
paper Derrida et a1 [ l l ]  have calculated the whole spectrum of Lyapunov exponents 
of a product of random matrices. Unfortunately their method and results are not valid 
in the physical domain of energy. 

It is the aim of this letter to investigate the distribution of Lyapuntiv exponents at 
low disorder in the thermodynamical limit. This letter is organised as Kollows. Firstly 
we consider a general ergodic linear and Hamiltonian dynamical system whose Hamil- 
tonian H is: H = Ha+ K V is a Gaussian white noise potential. We show that one 
can compute systematically a perturbative expansion for the sum of its positive 
Lyapunov exponents, i.e. its Kolmogorov entropy. Secondly we show that the highest 
positive Lyapunov exponent of the multichannel case is easily computable in the 
thermodynamical limit. With the help of these two results we investigate the limiting 
distribution of the Lyapunov spectrum in the two- and three-dimensional Anderson 
localisation. In particular we argue that it depends on the spectral properties of the 
unperturbed system. 

Let us consider a linear Hamiltonian system with N degrees of freedom. QI and 
P,, i = 1 ,  . . . , N, denote respectively the position variables and the momenta. To these 
variables we associated a vector: 0 = ( Q1, P I ) .  We write the Hamiltonian as 

H ( P ,  0) = HO(P9 Q)+ V(Q,  t )  ( 1 )  

where H and Ha are quadratic forms. Ha is the unperturbed time-independent Hamil- 
tonian. I t  describes a set of harmonic oscillators and is thus strictly positive (the case 
Ha negative corresponds to the problem treated by Derrida et a1 [ l l ] ) .  V is a 
time-dependent multiplicative noise of zero mean. In the following, Ha and V will 
also denote their associated N x N matrices. With these notations we have 

(V , ( t ) )=O v w v k /  ( t ) = ( v, ( f ) V k /  ( ' ) ) = D y k l 8  ( - t ' (2) 

where D is a tensor of order four. 
The N-channel localisation problem, investigated later in this letter, is defined by 

[ 121: 

where x is the position along the channels, qI  is the wavefunction on the ith channel 
and V satisfies (2) with D l J k ,  = D if i = j  = k = 1 and D,,kl = 0 otherwise. y is a constant 
characterising the coupling of the channels which we take equal to 1. Regarding x as 
a time variable, this problem is a particular case of ( 1 )  with H,,l-l = HI,,+, = 1,  H,,, = E - 2 
where E is the energy and all the other H,, are equal to zero. An obvious generalisation 
of these equations in three dimensions is obtained by indexing Y by two indices and 
by discretising the space in the two directions perpendicular to x. Let us recall that 
the energy levels of Ho are 

&k = E - 4 7  sin2(2.rrk/ N )  in two dimensions 
&k,p = E - 4y[sin2(2~k/  N )  + sin2(2np/ N)] in three dimensions. 

One way of calculating the Kolmogorov entropy X is to use the multichannel 
generalisation of the Thouless theorem [ 131 asserting that X( E )  + iN( E ) ,  where N (  E )  
is the integrated density of states, is an analytical function of E. As a consequence, 

k =  1 , .  . . , N 

k, p = 1,  . . . , N 
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one can deduce Z ( E )  from N ( E ) .  On the other hand, one can compute N ( E )  
perturbatively from the Green function of the problem. In the following we present 
an alternative but more direct method for calculating the Kolmogorov entropy. 

The equations of motion are 

aH . - -pi -= Qi. 
dH 
a Qi a pi 
-- 

Equivalently, we introduce the evolution operator U of the system, which satisfies 

U = (  -Ho+V O 0 ' ) U .  

It is easy to see that one can find a basis where the equation of motion of U is 

U = ( - ?  i;)u+i( 2 - w  - w  W ) U  

(4) 

( 5 )  

where we have set R = HA'2 and W = 
This basis can also be chosen so that Ho is diagonal. The first term of ( 5 )  may be 

eliminated by working in a rotating basis (with 'pulsation' R).  Writing in this basis 
the evolution operator 

VR'". 

x- Y -  
U = [ x +  Y + l  

where X', Y' (E  = +1 or -1 )  are N x N matrices, we obtain 
X - + w - + x - + "  21 w--x+ 
x +  = -$ w+-x+ -$ w++x- 

where W"'= exp ( i s n r )  W exp(ie'Rr). 

Z =;(a, iog det(X+X-)) .  

In order to compute the Kolmogorov entropy we argue that 

Using the Wronski identity and equations (6) we obtain 

Z = -Re( i Tr W++A) (8) 

with A = X-(X+) - ' .  It is straightforward to see that A satisfies 

(9) A = 'i 2 W-+A +'i 2 W-- + i i A  W+- +$A W++A. 

Now owing to the fact that V is a white noise we have for any continuous function 
F (A)  of A 

Using this property one can compute Z pertubatively in D. The term of order D is 
easy to obtain. Indeed we have 

( W - + A +  W--+AW+-+AW++A)  dr 
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Therefore 

(Tr( W++A))= l  lim - l T  
( m - + A +  w W - - +  W v + - +  -++A) dt. 

4 T - S  T 1 0  

(12) 

To the lowest order, only one term contributes (i.e. the term with no A).  Hence at 
order D one finds 

C = Tr( @). (13 )  

One can go beyond this lowest-order result by a systematic and recursive method. 
As an example, we sketch here the computation of order D2.  At that order the three 
other terms of (10) contribute. We proceed in three steps. First, we integrate by parts. 
For example the term ZI = (Wv"-'A) gives 

The second step is then to replace A by its expression ( 7 ) .  For I ,  this gives 

I n  the third step, we replace A by formally integrating (7 ) .  This allows us to use (8) 
to contract over the noise and separate all the contributions of order D2.  

Proceeding in this way for all the terms of order D2 which contribute to i(Tr( W++A)), 
one sees that all these contributions are purely imaginary. Therefore there is no 
contribution at order D2 to the Kolmogorov entropy (note that this is a very general 
result). 

One can proceed further and construct the expansion of X in powers of D recur- 
sively. 

At order n one has to perform the three steps outlined above, so as to obtain the 
order n + 1 .  Note that this algorithm leads to two kinds of terms according to the signs 
in the exponential it contains: ( i )  terms with the same number of positive E and negative 
E ,  which do not contain A anymore and ( i i )  terms with a different number of positive 
E and negative E which contain A but which contribute only at a higher order than 
terms of the first kind. It is for that reason that our expansion is indeed possible. 

We now wish to investigate the thermodynamical limit of the largest Lyapunov 
exponent A,,,( N ) .  The calculation of A,,,(N) for an  arbitrary number N of channels 
seems to be a very difficult task. As we will show here, it is nevertheless possible to 
obtain this exponent for a weak noise in the large N limit by extracting the dominant 
contribution in the 1/N expansion of Amdx(N). Note also, that for two channels, a 
complete derivation is possible in the weak noise limit [ 14, 151. 

In the following p ( P ,  Q, t )  will denote the measure associated with the system. CL 
satisfies the Fokker-Planck equation 

a# P&,P - Ho,QJa,P -fDydp,QJQiapkP = 0. (15)  

We denote by S the quadratic form 

s =  AnmQnQm +{BL(QnPm + QmPn)+fBim(QnPm - Q m P n ) +  C n m P m P n .  (16) 
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A, B+ and C are symmetric N x N matrices while B -  is an N x N antisymmetric 
matrix. These matrices will be specified later. 

The largest Lyapunov exponent is 

Amax=$at(log S )  (17) 
where the mean is taken over the measure. Using the Fokker-Planck equation one 
obtains 

al(log s) = ((l/s)plaQ,s) - H I J ( ( l / s ) Q J a P , s )  + tDyk! (QJQlap ,  ( l /  s )aP , s ) .  ( 1 8 )  

a,(log S ) = ( M ( P ,  Q ) / s > + ( K ( P ,  Q ) / S 2 )  (19)  

After a straightforward calculation one sees that a,(log S )  may formally be written as 

where M is a quadratic form of its variables and K is a quartic expression of Q and 
P. 

Thanks to the homogeneity of the terms in the right-hand side, in the limit of t + 00, 

the mean values can be taken with respect to the invariant measure. This invariant 
measure is the projection of p on the hypersphere in the space (0, P). 

Now it is possible to choose A, B + ,  B -  and C such that there exists v satisfying 

M ( P ,  Q )  = vs. (20)  

vc,, = B;, 

One sufficient condition is that these matrices obey the following set of equations: 

vB:f?l = 2Aflt?l  - ( H?7Jcfl, + HflJcf?lJ) 

vB,, = HflJcl?lJ - H171JcflJ 

( 2 1 )  

vAflm = -f( HflJB:m + HmJB; - HJr?lBS - HJflBym) + DnmklCkl*  

The eigenvalue v is determined by 
2 

cfl171 = ( 2 / v ) [ - $ v H m J C f l J  -tvHflJC,J+f(l/v)H,J(HflkCJk - HJkCnk) 

+ t ( l / v ) H n J ( H m k C J k  - H , k C m k ) + f D g k l C k J + f D n ~ m k C k ~ ]  

- HWIJcJfl - HflJcmJ' ( 2 2 )  
The key points for the determination of v in the limit N + o;, are as follows. 
(i)  One verifies that the eigenproblem which determines S is the same as the one 

which gives the asymptotic evolution of the different second-order moments. This 
evolution is characterised by 'the generalised Lyapunov exponent of order two' defined 
as L(2)  =$im log(lJ@@@(I). 

(ii) With this choice of S the second term in (18) is negligible. Indeed, at least for 
the Anderson problem (and even for a wider class of noise structure that we will not 
investigate in this letter), this term vanishes in the thermodynamical limit. 

Let us demonstrate explicitly this last property in the case of the Anderson localisa- 
tion. The resolution of the eigenproblem leads to the implicit equation 

L ( 2 )  = $ v = f DR,( v2/4) (23) 
where R is the resolvant R ( z )  = l / ( H + z ) .  

We write ( 1 8 ) ,  A,,, = L(2) (  1 - 8). For weak noise the sole contribution to S is 
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with S = Q,Q, + P,C,,P,. After the change of variable Y = CP, (24) may be written as 

In order to prove that 6 is negligible in the limit N + CO, we make the following remarks. 
( i )  The maximal value of 6 is 1 .  This corresponds to invariant measures sharply 

peaked along the directions (Q, ,  P , ) .  This situation is indeed realised for N channels 
totally decoupled. This can be checked by considering the product of N individual 
log-normal measure (see for instance [16]). 

(ii) When the channels are coupled, and  at weak noise, the peaks of the invariant 
measure no longer exist. Indeed, thanks to the ergodicity, mean values can be evaluated 
by integrating over the time evolution. Even if we start from the worse initial conditions, 
namely all the (Q,, P , )  except one equal to zero, the time evolution which can be 
considered as free on timescales less than 1/v, will isotropise the invariant measure 
provided v is less than the spectral width A of Ho. This is an effect of phase mixing. 
Notice that the condition v < A  is indeed sufficient. It is important for the validity of 
our proof that the much stronger condition v << A E, where A E  - A/ N is the mean level 
spacing, is not required. A rough estimate of the free evolution of S shows that in the 
thermodynamical limit it decreases as l / t .  Hence, one concludes that 

A m a x ( N )  = L(2) (26) 

up to a correction of order L(2)/A.  
Of course, a more direct verification of our  claims should be done b) computing 

L(4) and showing explicitly (in the thermodynamical limit) that L(4) = L ( 2 ) .  Then 
the convexity and the increasing of L( N )  would imply L(2) = A m a x .  Unfortunately 
this calculation seems rather involved. 

All the previous results can be applied to the Anderson localisation. The Kolmogorov 
entropy and  v up to order D2 are computed to be 

and  

D 1  
4N k Ek 

A,,, = - c -. 
For N = 1,  (27) gives the usual result of the one-dimensional case at  weak disorder. 

A useful quantity for studying the distribution of the Lyapunov exponents is the 
‘convexity index of the distribution’ that we define as: I = lim,+r NA,,,/Z. For the 
triangular distribution I = 2. In the general case, I gives some insight into the convexity 
of the spectrum. At weak disorder, (27) and (28) gives (for E > 4 in two dimensions 
or E > 8 in three dimensions): 

where P ( E )  is the density of states associated with Ho. Equation (29) is the central 
result of this letter. It follows clearly from this formula (by the Schwarz inequality) 
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that for weak disorder I is always greater than two. This result supports the idea that 
the Lyapunov spectrum is always convex at weak disorder. This property was already 
noted [9, 101 through numerical simulations. Note that although (29) is proved here 
under cyclic boundary conditions it must be true independently of this particular 
geometry. 

At high energy in two and three dimensions we obtain I = 2 from (27) and (28). 
This result is in agreement with the result of Dorokhov [12]. 

At lower energy, I depends on E and D and generally I = 2. Let us look for 
instance in three dimensions for E =8.  One has 

Z. = a N D / 8  (30) 

where a is a number independent of D 

2ir dk,  1 
= (lo 27, 2 (cos' k ,  +cos2 k2)'12 

On the other hand, v is given by 

D 2"dk,  2"dk, 1 
' = T  lo lo v2+cos2 k,+cos2 k; 

The v Z  in the denominator of the integrand makes the result convergent and gives for 
v a behaviour: v - NDP In ( D o / D )  where Do and P are some numbers which depend 
on E. One therefore concludes that I depends logarithmically on D. To make the 
result more quantitative in two dimensions, one has to take care of the infrared 
logarithmic divergence of the integral in (27). This question is beyond the scope of 
this letter. 

In this work we have been able to investigate a simple characteristic of the Lyapunov 
spectrum, namely its 'convexity index', in the weak noise limit. According to our result 
the triangular law is not recovered, except at weak coupling, in the thermodynamical 
limit. An important result we have obtained is that in this limit, the largest Lyapunov 
exponent and the generalised Lyapunov exponent of order two are equal. This absence 
of dispersion is in notable contrast with the one-dimensional case, where A,,, = iL(2). 
We remark that it is precisely this absence of dispersion which yields I = 2 in the 
high-energy limit. 

Physical quantities, like conductance of samples, are related to the whole Lyapunov 
spectrum and, particularly for long samples, to the density of the lower exponents. 
Such information is only available through an infinite number of integral indices 
characterising the Lyapunov spectrum. The study of such quantities is under investiga- 
tion using similar techniques. 

We thank C Bachas and F Delyan for a careful reading of the manuscript. We are 
also indebted to the latter for fruitful discussions. 
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